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ABSTRACT We present a theoretical analysis of the structural and mechanical properties of the 30-nm chromatin fiber. Our
study is based on the two-angle model introduced by Woodcock et al. (Woodcock, C. L., S. A. Grigoryev, R. A. Horowitz, and
N. Whitaker. 1993. Proc. Natl. Acad. Sci. USA. 90:9021–9025) that describes the chromatin fiber geometry in terms of the
entry-exit angle of the nucleosomal DNA and the rotational setting of the neighboring nucleosomes with respect to each other.
We analytically explore the different structures that arise from this building principle, and demonstrate that the geometry with
the highest density is close to the one found in native chromatin fibers under physiological conditions. On the basis of this
model we calculate mechanical properties of the fiber under stretching. We obtain expressions for the stress-strain
characteristics that show good agreement with the results of recent stretching experiments (Cui, Y., and C. Bustamante.
2000. Proc. Natl. Acad. Sci. USA. 97:127–132) and computer simulations (Katritch, V., C. Bustamante, and W. K. Olson. 2000.
J. Mol. Biol. 295:29–40), and which provide simple physical insights into correlations between the structural and elastic
properties of chromatin.

INTRODUCTION

Recently there has been considerable progress both in the
visualization (Bednar et al., 1998) and micromanipulation
(Cui and Bustamante, 2000) of chromatin fibers. These
results constitute an important step toward the understand-
ing of DNA “folding,” i.e., the problem of how plant and
animal genomes organize themselves into volumes whose
linear dimensions are many orders of magnitude smaller
than their contour lengths. For instance, human DNA is
billions of basepairs (bp) long (about a meter); this length of
highly charged (about one fundamental charge per two
Angstroms) and hard-to-bend (persistence length of 50 nm)
linear polymer must be condensed into chromosomes that fit
into cell nuclei whose characteristic size is a micron.

An important part of the condensation process is the
complexation of DNA with oppositely charged globular
protein (histone) aggregates that have the shape of squat
cylinders. These aggregates are octameric complexes con-
sisting of pairs of the four core histones H2A, H2B, H3, and
H4. A DNA stretch of 147 bp is wrapped in a 13⁄4 left-
handed superhelical turn around the histone octamer and is
connected via a stretch of “linker” DNA to the next such
protein spool. Each protein aggregate together with its
wrapped DNA composes a nucleosome core particle (cf.
Fig. 1) with a radius of;5 nm and a height of;6 nm; with
its linker DNA it is the fundamental chromatin repeating

unit. It carries a large negative electrostatic charge (Khra-
punov et al., 1997; Raspaud et al., 1999). Whereas the
structure of the core particle has been resolved up to high
atomic resolution (Luger et al., 1997), there is still consid-
erable controversy about the nature of the higher-order
structures to which they give rise. When stretched, the string
of DNA/histone complexes has the appearance of “beads-
on-a-string.” This basic structure can be seen clearly when
chromatin is exposed to very low salt concentrations, and is
known as the “10-nm fiber” (Thoma et al., 1979), because
the diameter of the core particle is 10 nm. With increasing
salt concentration, i.e., heading toward physiological con-
ditions (100 mM), this fiber appears to thicken, attaining a
diameter of 30 nm (Widom, 1986). The absence of the extra
“linker histones” (H1 or H5) leads to more open structures
(Thoma et al., 1979) so it is surmised that the linker histones
act near the entry-exit point of the DNA (cf. Fig. 1); they
carry an overall positive charge and seem to bind the two
strands together, leading to a stem formation (Bednar et al.,
1998). Increasing the salt concentration is expected to de-
crease the entry-exit angle of the stem as it reduces the
electrostatic repulsion between the two strands.

Longstanding controversy (van Holde, 1989; Widom,
1989; van Holde and Zlatanova, 1995, 1996) surrounds the
structure of this “30-nm fiber,” for which there are mainly
two competing classes of models: the solenoid models
(Finch and Klug, 1976; Thoma et al., 1979; Widom and
Klug, 1985), and the zig-zag or crossed-linker models
(Woodcock et al., 1993; Horowitz et al., 1994; Leuba et al.,
1994; Bednar et al., 1998). In the solenoid model (Fig. 2A)
it is assumed that the chain of nucleosomes forms a helical
structure with the axis of the core particles being perpen-
dicular to the solenoid axis (the axis of an octamer corre-
sponds to the axis of the superhelical path of the DNA that
wraps around it). The DNA entry-exit side faces inward
toward the axis of the solenoid. The linker DNA (shown as
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a dashed curve at the top of Fig. 2A) is required to be bent
in order to connect neighboring nucleosomes in the sole-
noid. The other class of models posits straight linkers that
connect nucleosomes located on opposite sides of the fiber.
This results in a three-dimensional zig-zag-like pattern of
the linker (Fig. 2B).

Images obtained by electron cryomicroscopy should in
principle be able to distinguish between the structural fea-
tures proposed by the different models mentioned above
(Bednar et al., 1998). The micrographs show a zig-zag motif
at lower salt concentrations and they indicate that the chro-
matin fiber becomes more and more compact when the ionic
strength is raised toward the physiological value. However,

for these denser fibers it is still not possible to detect the
exact linker geometry (see Note 1 at end of text).

An important experimental achievement was the stretch-
ing of a single chromatin fiber via micromanipulation (Cui
and Bustamante, 2000). The “force-extension” measure-
ments show a rich behavior of the mechanical properties as
a function of the ionic strength. At low ionic strength (5 mM
NaCl) the force-extension curves are reversible as long as
the tension does not exceed 20 pN. For higher tension levels
(*20 pN) there are irreversible changes that lead to an
increase of the fiber length, probably due to the loss of
linker histones and/or histone octamers. At high ionic
strength (40 and 150 mM NaCl) a 5-pN plateau in the force
extension curve was found (see Note 2). The authors inter-
preted their results as indicating a coexistence between
“swollen” and “condensed” parts of the fiber. In order to
reproduce the force-extension curves, Katritch et al. per-
formed Monte Carlo simulations (Katritch et al., 2000)
based on a geometrical “two-angle” model introduced by
Woodcock et al. for the 30-nm fiber (Woodcock et al.,
1993) combined with the worm-like chain (WLC) Hamil-
tonian for the linkers. The WLC is widely used for predict-
ing the mechanical properties of naked DNA. The low-salt
behavior could be reproduced for several sets of angles and
bond lengths of the model, demonstrating both that it is a
reasonable model and that it is not possible to deduce a
unique structure from the measured response of the fiber
under stretching. Katritch et al. found that an internucleo-
somal attraction of;3 kT might explain the experimentally
observed plateau in the force-extension profile. The biolog-
ical importance of these results lies in the fact that signifi-
cant changes can be achieved in the degree of chromatin
condensation with only modest levels of external stress. The
fact that chromatin at physiological salt concentrations ap-
parently can exist in two alternative forms that interconvert
under low levels of stress is particularly interesting.

The success of the model motivated the present study to
provide an analytical framework for understanding the geo-
metrical and mechanical properties of the 30-nm fiber based
on the two-angle model. Our first main result is the deriva-
tion of a general structural phase diagram of the chromatin
fiber as a function of the two basic anglesu and f deter-
mined by the nucleosome properties and the linker lengthb
(see below). The various solenoidal, zig-zag and crossed-
linker structures—all of which are assumed to have straight
linkers—appear as “points” in this phase diagram (see Fig.
4). We find that, within the two-angle model, the position of
chromatin fibers at physiological conditions (the “native”
fibers) in the phase diagram is surprisingly close to the point
in the diagram with the highest density and the maximal
accessibility, consistent with excluded-volume restrictions.
Changes in bond angles induced by physicochemical
changes in the environment lead to predictable changes of
the fiber away from this optimal point toward more open
structures.

FIGURE 1 Schematic representation of the nucleosome. Eight core hi-
stones aggregate into the histone octamer that acts as a cylindrical spool
around which the DNA is wound in 13⁄4 turns. The linker histone is also
depicted that acts at the entry-exit point of the DNA. The entry-exit angle
p 2 u of the linker DNA is one of the angles defining the two-angle model.

FIGURE 2 The two competing models for the 30-fiber. (A) The solenoid
model and (B) the crossed linker model (see text).
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Our second main result is that we can obtain approximate
analytical results for the bending stiffness of the two-angle
model—and hence for the persistence length—and for the
force-extension curve. We find 1) that the persistence length
of the fiber should be comparable to or less than that of
naked DNA, for a wide range ofu- andf-values; and 2) that
the stretching modulus should be so low that there is no
longer a pronounced difference between “soft” entropic
elasticity (for low forces) and “hard” entropic elasticity (for
high forces), in marked contrast with the case of naked
DNA. Using the estimated values ofu, f, and b the pre-
dicted force-extension curves (with no fitting parameter) are
in good agreement with the data found for the stretching of
chromatin fibers (Cui and Bustamante, 2000).

The implication of our results is that a swollen 30-nm
fiber should be very soft in terms of its elastic properties,
over a wide range of values of the angle parameteru andf,
a very reasonable “design feature” in terms of its biological
role. This swollen state competes with a more rigid con-
densed state that appears, as a function of bond angleu,
when we allow for (weak) attractive forces between nucleo-
somes. The physical properties of the condensed state are
beyond the scope of the current paper, but the condensed
fiber is expected to be significantly stiffer that the swollen
fiber. In general, our results appear to indicate that the
“engineering design” of the 30-nm fiber combines high
compaction levels with high structural accessibility and
flexibility. Independent of the question whether the swollen
or the condensed state is realized, modest changes in the
control parameterp 2 u (the nucleosome entry-exit angle)
produce large structural changes.

The paper is organized as follows. In the next section we
derive the geometrical properties of the two-angle model
and present the general diagram of states. In subsequent
sections we apply our results of the two-angle model to
interpret the structure of the 30-nm chromatin fiber in terms
of simple optimization principles, and derive the elastic
properties of the two-angle model and give the bending
stiffness and the force-extension relation. In the concluding
section we summarize our results and discuss alternative
models.

THE TWO-ANGLE MODEL:
FOLDED STRUCTURES

General relationships

To address the folding problem of DNA at the level of the
30-nm fiber we need a mathematical description for the
different possible folding pathways. At the simplest level, it
is assumed that the geometric structure of the 30-nm fiber
can be obtained from the intrinsic, single-nucleosome struc-
ture. The specific roles of linker elastic energy, nucleosome-
nucleosome interaction, preferred binding sites, H1 involve-
ment, etc. will be treated afterward as “corrections” to this

basic model. To see how single-nucleosome properties can
control the fiber geometry, consider the fact that DNA is
wrapped a non-integral number of turns around the nucleo-
some, e.g., 13⁄4 times (147 bp) in the case of no H1. This
implies that the incoming and outgoing linker chains make
an angleu with respect to each other—the entry-exit angle
p 2 u is nonzero. In the presence of the histone H1 (or H5)
the in- and out-coming linker are in close contact, forming
a stem before they diverge (Bednar et al., 1998). Although
the precise value of the resulting exit-angle depends on salt
concentration, degree of acetylation of the histones, etc., we
may nevertheless assumeu to be a quantity that is deter-
mined purely at the single-nucleosome level. Next, we
define the rotational (dihedral) anglef between the axis of
neighboring histone octamers along the necklace (see Fig.
3). Because nucleosomes are rotationally positioned along
the DNA, i.e., adsorption of DNA always begins with the
minor groove turned in toward the first histone binding site,
the anglef is a periodic function of the linker lengthb, with
the 10-bp repeat length of the helical twist of DNA as the
period. There is experimental evidence that the linker length
shows a preferential quantization involving a set of values
that are related by integral multiples of this helical twist
(Widom, 1992), i.e., there is a preferred value off. (Note
that the “linker length”b is, strictly speaking, defined here
as the distance between two neighboring nucleosomes, cf.
Fig. 3.)

If we treat the pair of angles (u, f), together with the
linker lengthb, as given physical properties (even though in
vivo they are likely under biochemical control), then the
geometrical structure of the necklace is determined entirely
by u, f, andb. The model only describes linker geometry
and does not account for excluded volume effects and other
forms of nucleosome-nucleosome interaction; it assumes
that the core particles are pointlike (a 5 0) and that they are
located at the joints of the linkers. The model also assumes

FIGURE 3 Fraction of a two-angle fiber containing four nucleosomes (it
is a part of structure “11” in Fig. 4). The two angles are depicted, the
deflection angleu and the rotational anglef, together with the “nucleo-
some diameter” 2a and the “linker length”b. All four are considered to be
constant throughout the fiber. The arrows denote the nucleosomal axes, cf.
Fig. 1.
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that the linkers are straight. It is under dispute whether this
last condition holds for the 30-nm fiber at higher salt con-
centrations, and we will return to this issue later. The
(u, f)-model is similar to the freely rotating chain model
encountered in polymer physics literature (see, for instance,
Doi and Edwards, 1986). The main difference is that in the
present case there is no free rotation around the linker, and
so torsion is transmitted (see also Plewa and Witten, 2000).

As shown in Appendix A it is now possible to construct
a spiral of radiusR and pitch angleg such that the nucleo-
somes—but not necessarily the linker chain—are located on
this spiral. The nucleosomes are placed along the spiral in
such a way that successive nucleosomes have a fixed (Eu-
clidean) distanceb from one another. From straightforward
geometrical considerations we can derive analytical expres-
sions that relate pitch angleg and radiusR of the solenoid
to the pair of anglesu, f, and linker lengthb. Specifically,
the linker lengthb can be expressed as a function ofg, R,
ands0 (defined as the vertical distance between successive
“nucleosomes” along the helical axis),b 5 b(g, R, s0), as
given by Eq. 32. The corresponding relationships for the
anglesu and f, u 5 u(g, R, s0) and f 5 f(g, R, s0), are
given by Eqs. 33 and 34. Using these relations, we can
construct a catalog of structures.

Planar structures

If either one of the anglesu or f assumes the value 0 orp,
then the resulting structure is planar, and calculation of the
associated geometrical properties is straightforward. Let us
start with the casef 5 0. If we also haveu 5 0 the fiber
forms a straight line (see structure “1” in Fig. 4). For small
non-vanishingu the structure forms a circle of radiusR .
b/u. For the special caseu 5 2p/n, with n an integer, the
ring containsn monomers before it repeats itself and we
obtain a regular polygon (see “2”). The special caseu 5 p/2
corresponds to the square (“3”). With increasingu the radius
of the circle shrinks and asymptotically approaches the
valueb/2. Foru 5 p(n 2 1)/n with n being an odd integer,
one encounters a series of closed star-like polygons withn
tips. In particular,n 5 3 corresponds to the equilateral
triangle (“4”), n 5 5 to the regular pentagram (“5”), etc.

Next we consider the casef 5 p and u arbitrary. This
case corresponds to 2D zig-zag-like structures, as shown by
“6” and “7” at the top of Fig. 4. The length of a fiber
consisting ofN monomers is given by

L 5 b cos~u/2!N (1)

and the diameter is given byD 5 b sin(u/2). Note that the
length of the fiber increases with decreasingu.

To complete our discussion of planar structures we men-
tion the remaining cases:u 5 0 with an arbitrary value off
leads to the straight line mentioned earlier (“1”);u 5 p and

arbitrary f corresponds to linkers that go back and forth
between two positions (“8”).

Three-dimensional fibers

Solenoids

For small angles,u ,, 1 andf ,, 1, we find structures that
resemble solenoids where the linkers themselves closely
follow a helical path (see “9” in Fig. 4). For these structures
one hasas0/R ,, 1, wherea 5 cot g, with g the pitch
angle. To the lowest order inas0/R we find b . s0

=1 1 a2

(cf. Eq. 32),u . a2b/(R(1 1 a2)) (cf. Eq. 33), andf . u/a
(cf. Eq. 34). From this we can infer several geometrical
properties of the fiber as a function ofb, u, andf summa-
rized in Table 1.R denotes the radius of the fiber,L is the
length of a fiber consisting ofN 1 1 monomers,l is its line
densityN/L, andr is the 3D density given byr 5 l/pR2,
assuming a hexagonal array.

Other geometrical information can be obtained easily.
For instance, the vertical distanced between two loops
follows from L in Table 1 by settingN 5 2p/u (the number
of monomers per turn):

d .
2pfb

uÎf2 1 u2 (2)

Furthermore, the pitch angleg is given by

cot g . u/f (3)

FIGURE 4 Diagram of geometrical states of the two-angle model.
Shown are examples of different configurations and their location in the
(u, f)-space (arrows). The dashed and dotted curves depict the boundaries
to the (u, f)-values that are forbidden due to excluded volume interaction,
one regime (largeu-values) due to “short-range” interaction, the other
(small f-values) due to “long-range” interaction (see text for details).
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whereg decreases monotonically as the ratio of the angles,
u/f, increases. Forf ,, u one findsg . f/u. In this regime
one has a very dense spiral withd ,, R. In the opposite
limit f .. u the pitch angle is very large, namelyg .
p/2 2 u/f and the solenoid has a very open structure with
d .. R (see Notes 3 and 4).

Fibers with crossed linkers

Consider structures wheref is still small but where the
entry-exit angleu is large, i.e.,p 2 u ,, p. We discussed
in the previous section that forf 5 0 one encounters
star-shaped polygons that are closed foru 5 p(n 2 1)/n,
with n odd. For non-vanishingf ,, 1 the star-shaped
polygons open up in an accordion-like manner. This leads to
a three-dimensional fiber with crossed linkers: see “10.” It
follows from Eqs. 32 and 34 thats0

2 . f2 (4R2 2 b2)/4 for
f ,, 1. Using this result and Eq. 33,R, L, l, andr can be
expressed as a function ofb, u, andf, cf. Table 1.

Assume now thatun 5 p(n 2 1)/n so that the projection
of the fiber is a closed polygon (this is only strictly true for
f 5 0, but it is still a good approximation forf ,, 1). We
can calculate the spacial distanced between nucleosomei
and i 1 n for this case:

d .
nfb

2
cot~u/2! .

pfb

4 S1 1
p2

12n2D (4)

Twisted zig-zag structures

Finally, we discuss structures with a rotational anglef close
to p, sayf 5 p 2 d with d ,, 1. Ford 5 0 we recover the
2D zig-zag structure discussed earlier (“6” and “7”). Small
non-vanishing values ofd lead to twisted zig-zag structures:
see “11.” In this case monomeri 1 1 is located nearly
opposite to theith monomer, but slightly twisted by an angle
d. Monomeri 1 2 is then on the same side as monomeri but
slightly twisted by an angle 2d, and so on. The geometrical

properties are given in Table 1. Forf 5 p, i.e., d 5 0, we
recover the result for the planar zig-zag structure.

The fiber is contained within a cylinder of radiusR, given
in Table 1. The monomers (“histones”) are located at the
surface, with the linker passing back and forth (approxi-
mately) through the middle axis of the cylinder. The mono-
mersn, n 6 2, n 6 4 . . . and the monomersn 6 1, n 6 3,
. . . form a double helix that winds around the cylinder.
Within each of the two spirals the monomers are not directly
linked together, even though monomeri andi 1 2 can come
quite close in space for large values ofu. The pitch angle of
the two spirals follows from the positions of monomer 1 and
3; P1 5 (R, 0, 0) andP3 . (R, 22Rd, 2b cos(u/2)), cf. Eq.
30. Thusg 5 2p 1 Dg with Dg . d tan(u/2)/2.

Structure diagram and excluded
volume restriction

We now consider the full range of states in the (u, f)-space
as shown in Fig. 4. Both anglesu andf can each vary over
the range 0 top. At the edges of the diagram where one of
the angles assumes an extremal value, the configurations are
always planar. On the linef 5 0 we find circles and
star-type polygons (that are closed for specific values ofu).
The planar zig-zag-structures are located on the linef 5 p;
for u 5 0 we find a straight configuration and forf 5 p a
“dimer” structure. If we move from the linef 5 0 toward
larger values off the circles and star-like polygons stretch
out into the direction perpendicular to their plane, forming
a solenoid and a fiber with crossed linkers, respectively.
However, if we start at the top of the diagram (f 5 p) and
decrease the value off, the planar zig-zag structure extends
into the third dimension by becoming twisted. If we start
with a structure with entry-exit angleu 5 0 and increase the
value of this angle, then the structure folds either into a
solenoid with large pitch angle for smallf-value or into a
twisted zig-zag for large values off. Finally, starting out at
the dimer configuration,u 5 p leads to an unfolding of the

TABLE 1 Geometrical properties of the two-angle fiber for the three limiting cases: solenoid, fiber with crossed linkers, and
twisted zig-zag fiber

Solenoid
(f ,, 1, u ,, 1)

Crossed Linkers
(f ,, 1, p 2 u ,, 1)

Twisted Zig-Zag
(f 5 p 2 d with d ,, 1)

R u

f2 1 u2 b
b

2 sin~u/2! S1 2
f2

4
cot2~u/2!D b

2
sinSu

2DS1 1
d2

4D
L fbN

Îf2 1 u2

Nfb

2
cot~u/2! b cosSu

2DNS1 2
d2

8
tan2Su

2DD
l

Îf2 1 u2

fb

4

bf~p 2 u!

1 1 d2tan2~u/2!/8

b cos~u/2!

r ~f2 1 u2!5/2

pfu2b3

16

pf~p 2 u!b3

4

p

1 1 d2~tan2~u/2!/4 2 1!/2

b3cos~u/2!sin2~u/2!

Displayed are the fiber radiusR, the lengthL of a (N 1 1)-mer, the line densityl 5 N/L, and the 3D densityr 5 l/pR2.
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structure into a fiber with crossed linkers (smallf-values)
or a twisted zig-zag (largef-values).

If we take into account the excluded volume of the core
particles, then certain areas in our phase diagram are for-
bidden—reminiscent of the familiar Ramachandran plots
used in the study of protein folding (Stryer, 1995). For
simplicity we assume in the following that the core particles
are spherical with a radiusa and that their centers are
located at the joints of two linkers, cf. Fig. 3. There are two
different types of interactions. One is between monomers at
position i and i 6 2 (short-range interaction), and leads to
the requirement that the entry-angle must be sufficiently
small:

u , 2 arccos~a/b! . p 2
2a

b
, a ,, b (5)

This condition excludes a vertical strip at the right side of
the diagram, as indicated in Fig. 4 by a dashed line.

There is also a long-range excluded volume interaction
that comes into play when the anglef is too small. This is
apparent for the casef 5 0, where we find planar structures
that run into themselves. Starting with a circular structure
we have to increasef above some critical value so that the
pitch angle of the resulting solenoid is large enough so that
neighboring loops do not interact. This leads to the require-
mentd . 2a with d given by Eq. 2 (usingf ,, u), i.e.,

f .
1

p

a

b
u2 (6)

For the largeu-case (fibers with crossed linkers) we find
from Eq. 4 the condition

f .
8

p

a

b
(7)

The two conditions, Eqs. 6 and 7, shown schematically as a
dotted curve in Fig. 4, lead to a forbidden strip in the
structure diagram for small values off.

Figure 4 does not show the interesting “fine-structure” of
the boundary of the forbidden strip that is due to commen-
surate-incommensurate effects. We already noted that there
are specialu-values for which the projection of the linkers
forms a regular polygonal star (un 5 p(n 2 1)/n) or a
regular polygon (u9n 5 2p/n) (for small values off). In
these cases the nucleosomesi andi 1 n “sit” on top of each
other. However, for other values ofu, monomers of neigh-
boring loops will be displaced with respect to each other. In
this case monomers of one loop might be able to fill in gaps
of neighboring loops so that the minimal allowed value off
is smaller than estimated above. We have not explored the
interesting mathematical problem of the exact boundary line
because this is likely to be sensitive to the exact nucleosome
shape. The dotted line in Fig. 4 only represents the upper
envelope of the actual curve.

Our discussion of the two-angle model was based on the
assumption of a perfectly homogeneous fiber whereb, u,
and f are constant throughout the fiber. The effect of
randomness in these values on the fiber geometry is dis-
cussed in Appendix B.

CHROMATIN AND THE TWO-ANGLE MODEL:
OPTIMIZATION OF DESIGN?

Where in the structure diagram is actual chromatin located?
The classical solenoid model of Finch and Klug (1976) is
found in the smallu, small f section of the diagram (al-
though in their case the linker is bent). Various structures
were displayed by Woodcock et al. (1993) in their Fig. 2,
namely fibers withu 5 150° and many different values of
f, corresponding to a vertical trajectory on the right-hand
side of Fig. 4. Three different configurations with a fixed
value off and different values ofu are displayed in Fig. 3c
in another paper by these authors (Bednar et al., 1998).

Our structure diagram accommodates all of these struc-
tures and, by itself, does not favor one over another. How-
ever, our diagram plus the formulas given above are useful
if we invoke the following two criteria to optimize the
structure of the 30-nm fiber: 1) maximum compaction and
2) maximum accessibility. The first criterion is obvious:
inactive chromatin should be packed as densely as possible
because of the very large ratio of DNA length to nucleus
size. By the second criterion we mean that a local accessi-
bility mechanism is required for gene transcription.

In order to attain maximum compaction we need struc-
tures that lead to high bulk densitiesr (we assume that the
30-nm fibers are packed in parallel, forming a hexagonal
lattice). A comparison of the 3D densities of the three
different structures given in Table 1 shows that fibers with
internal linkers have highest densitiesr, namely

r .
16

pf~p 2 u!b3 (8)

In particular, the highest density is achieved for the largest
possible value ofu and the smallest possible value off that
is still in accordance with the excluded volume condition.
This set of angles is located at the point where the dotted
curve and the dashed line in Fig. 4 cross each other. Ap-
parently this also represents the only region in the phase
diagram where excluded volume effects are operative on a
short-range and a long-range scale at the same time, i.e.,
nucleosomei is in close contact with nucleosomei 2 2 and
i 1 2 andwith nucleosomes farther apart along the contour
length of the necklace. This unique set of angles is given by
umax ' 2 arccos(a/b), cf. Eq. 5, andfmin ' (8/p)(a/b), cf.
Eq. 7.

In order to achieve maximum accessibility we look for
structures that, for a given entry-exit anglep 2 u of a highly
compacted structure, achieve the maximum reduction in
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nucleosome line densityl for a given small changeDu of
the angleu. In other words, we look for a maximum of
dl/du, which we call the “accessibility.” Interestingly, the
accessibility is maximized at the same unique pair of angles
(umax, fmin). This can be seen from its angle dependence for
fibers with crossed linkers

dl

du
.

4

fb~p 2 u!2 (9)

We note that this change inl with u is achieved by chang-
ing the number of monomers per vertical repeat lengthd.
The lengthd itself is only weakly dependent onn according
to Eq. 4.

Before we compare our theoretical formulas with exper-
imental results, we mention that for fibers with crossed
linkers there might be another excluded volume interaction,
namely between linkers. For these structures the linker
connecting the monomersi and i 1 1 comes closest to the
linkers between monomeri 1 2 and i 1 3 and the one
betweeni 2 1 andi 2 2, as can be seen for then 5 5 case,
cf. “5” and “10” in Fig. 4. The linkers cross close to the
middle of the fiber where the distance between their axes is
given by 2(fb/2) cot(u/2) . fb(p 2 u)/2, cf. Eq. 4. This
distance is minimized at (umax, fmin) and has to be larger
than the thicknesst of the fiber:

t ,
8

p

a2

b
(10)

We now compare the above-given formulas with exper-
imental results. For chicken erythrocyte chromatin one has
;b ' 20 nm (center-to-center distance of nucleosomes, van
Holde and Zlatanova, 1996). Together witha ' 5 nm this
leads toumax' 151°,fmin ' 36°, andl ' 6.9 nucleosomes
per 11 nm (cf. Eqs. 5, 7, and 8). Furthermore, the condition
on the linker thickness is given byt , 3.2 nm and is
fulfilled, becauset 5 2 nm for DNA. The theoretically
derived values can now be compared with the ones reported
by Bednar et al. for chicken erythrocyte chromatin fibers
(Bednar et al., 1998). From their Table 1 we find that for an
ionic strength of 80 mM (which is close to the physiological
value) u ' 145° andl 5 5.9 nucleosomes per 11 nm.
Furthermore, electron cryotomography-constructed stereo
pair images of an oligonucleosome (cf. Fig. 3b in Bednar et
al., 1998) indicate that the chromatin fiber might indeed
have the structure of a fiber with crossed linkers, withn '
5; this would correspond tou 5 p(n 2 1)/n ' 144°.

Information concerning the preferred value forf may be
obtainable from the measured statistical distribution of the
nucleosome repeat lengths. This distribution shows statisti-
cally preferred linker lengths equal to 10k 1 1 bp with k a
positive integer (Widom, 1992) which, in turn, indicates
that the rotation anglef corresponds to a change in helical
pitch associated with 1 bp, i.e., 360°/105 36°. This value

coincides withfmin, the value that we estimated for maxi-
mum compaction (see Note 5).

The second feature, the local accessibility, can be moni-
tored in vitro by changing the salt concentration. Bednar et
al. report, for example, thatu decreases with decreasing
ionic strength, namelyu ' 145° at 80 mM,u ' 135° at 15
mM, and u ' 95° at 5 mM (Bednar et al., 1998). In the
biochemical context the change ofu is accomplished by
other mechanisms, especially by the depletion of linker
histones and the acetylation of core histone tails (cf., for
instance, van Holde and Zlatanova, 1996), both of which are
operative in transcriptionally active regions of chromatin.
These mechanisms lead effectively to a decrease ofu.

As pointed out below Eq. 9, the decrease ofu is accom-
panied by a decrease of the line-densityl 5 n/d of nucleo-
somes at an essentially fixed value ofd. In other words, the
number of vertices of the projected polygon decreases sig-
nificantly with decreasingu becauseun 5 p (1 2 1/n). In
that respect the effect of reducingu below the optimal
packing value might be best viewed as an “untwisting” of
the 30-nm fiber. Using the experimentally determined val-
ues ofu we find from Table 1 that the density (the number
of nucleosomes per 11 nm) is given byl ' 6.8 for u '
145°, l ' 4.5 for u ' 135°, andl ' 2.3 for u ' 95°,
slightly higher than the experimental valuesl ' 6.0, l '
3.2, andl ' 1.5 (Bednar et al., 1998). Furthermore, the
number of polygonal verticesn 5 p/(p 2 u) decreases as
follows: n ' 5.1 for u ' 145°,n ' 4.0 for u ' 135°, and
n ' 2.1 for u ' 95°, consistent with the stereo pair images
by Bednar et al., suggestingn ' 5 at an ionic strength of 80
mM andn ' 3 at 5 mM (cf. Figs. 3a andb in Bednar et al.,
1998).

We close this section with a cautionary remark. The 3D
density and the line density of the fiber cannot only be
changed by changingu or f, but also by changing the linker
length (in multiples of 10 bp). A variation inb changes the
location of the point (umax, fmin) in the diagram of geomet-
rical states, and thus the values of the maximum 3D and line
densities that can be achieved, namely

rmax .
16

pfmin~p 2 umax!b
3 .

1

a2b
(11)

and

lmax .
4

bfmin~p 2 umax!
.

p

4

b

a2 (12)

This shows that fibers with smaller values ofb can achieve
higher 3D densities but have a smaller maximal line density
(and accessibilitydl/du } b2). From this one might infer
that active cells should have larger nucleosome repeat
lengths in order to maximize the accessibility to their ge-
netic material. An overview on nucleosome repeat lengths
in different organisms and tissues is given in Table 7-1 of
van Holde’s book (van Holde, 1989). The data shown there
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do not follow this rule, unfortunately. In fact, very active
cells like yeast cells and neuronal cells have, in general,
short nucleosome repeat lengths, while inactive ones like
sperm cells have large ones. This shows that the optimiza-
tion principle of high density has to be used with caution.

STRETCHING AND COMPRESSION OF TWO-
ANGLE FIBERS

The (u, f, b) model developed so far is purely geometrical.
Could it be useful as well for predicting physical properties
of the 30-nm fiber? The response of the 30-nm fiber to
elastic stress will be the focus of this section. The elastic
stress can either be of external or of internal origin. External
stresses are exerted on the chromatin during the cell cycle
when the mitotic spindle separates chromosome pairs. The
30-nm fiber should be both highly flexible and extensible to
survive these stresses. The in vitro experiments by Cui and
Bustamante demonstrated that the 30-nm fiber is indeed
very “soft” (Cui and Bustamante, 2000).

The 30-nm fiber is also exposed to internal stresses.
Attractive or repulsive forces between the nucleosomes will
deform the linkers connecting the nucleosomes. For in-
stance, electrostatic interactions, either repulsive (due to the
net charge of the nucleosome core particles) or attractive
(bridging via the lysine-rich core histone tails; Luger et al.,
1997) could lead to considerable structural adjustments of
the (u, f, b) model.

In this section we will derive an analytical description of
the force extension curve of the (u, f, b) model in order to
predict the elastic properties of the different structures ob-
tained in the previous section. Using the particular values of
u and f that are observed experimentally (Bednar et al.,
1998; Widom, 1992), we can reproduce rather well the
measured force-extension curve of Cui and Bustamante and
the numerical results of Katritch et al. that were based on a
variant of the (u, f, b) model (see below).

Before considering the elastic properties of the (u, f, b)
model, it is helpful to briefly recall some results concerning
the large-scale elasticity of the DNA itself (Cluzel et al.,
1996; Marko, 1998). The measured force-extension curve of
naked DNA breaks up into two highly distinct regimes: the
“entropic” and “enthalpic” elastic regimes. For very low
tensionf (&1 pN), the restoring force is provided by “en-
tropic elasticity” (de Gennes, 1979). In the absence of any
force applied to its ends, the DNA’s rms end-to-end distance
(chain length,L) is small compared to its contour length (L0)
and the chain enjoys a large degree of conformational
disorder. Stretching DNA reduces its entropy and increases
the free energy. The corresponding forcef increases linearly
with the extensionL:

f .
3kBT

ADNA

L

L0
, L ,, L0 (13)

The length ADNA is known as the “thermal persistence
length” of DNA and is of the order 50 nm (Hagerman,
1988).

For higher forces (f * 10 pN), the end-to-end distanceL
is close to L0 and the elastic restoring force is due to
distortion of the internal structure of DNA. In this regime,
the force extension curve can be approximated by

f . kBTgDNA

L 2 L0

L0
, L * L0 (14)

We will call g 5 (­f/­L)L0/kBT the “stretching modulus.”
gDNA is ;300 nm21 (Cluzel et al., 1996; Smith et al., 1996),
i.e., almost four orders of magnitude larger than the corre-
sponding value 3/ADNA obtained from Eq. 13.

Bending and twisting of linker

To calculate the stretch modulus of the (u, f, b) model, each
linker is modeled as a wormlike chain (WLC) of fixed
lengthb (see Schlick, 1995 for a review of the WLC). We
denote the geometrical configuration of thekth linker (k 5
1, 2, 3, . . .) byrk(s), with s being the arclength, 0# s # b.
The elastic energy of the wormlike linker is given by the
sum of the bending and the torsional energies:

Ek 5 1
2E

0

b

dsHkS 1

Rk~s!
D2

1 CSdhk~s!

ds D2J (15)

Here k is the bending stiffness which is related to the
persistence lengthADNA of (linker) DNA by k 5 kBT ADNA.
Furthermore, 1/Rk(s) 5 ud2rk(s)/ds2u denotes the curvature
of the kth linker at the points along its contour. The
torsional angle of the linker ishk(s) and the torsional
stiffness isC. The positionsrk(0) and rk(b) of the two
termini of thekth linker coincide with the termini of the
neighboring linkers, i.e.,rk21(b) 5 rk(0) and rk(b) 5
rk11(0). Furthermore, we assume that the entry-exit angles
have the fixed valuep 2 u independent of the bending and
twisting of the linkers. This means that the unit tangents
fulfil the condition cos(u) 5 tk(b) z tk11(0), with tk(s) 5
drk(s)/ds.

Enthalpic elasticity

We first study the stretching of the planar zig-zag pattern
(f 5 p, u arbitrary). The undeformed zig-zag fiber is
depicted in Fig. 5A. In order to give a more accurate
description of the mechanical properties of the fiber, we
assume that the nucleosome core particles are not located at
the sites where two linkers come together, but rather slightly
displaced, forming a stem configuration as shown in Fig.
5 A. This is the geometry obtained from the electron cryo-
micrographs of Bednar et al. (1998) and it is the same
geometry that was adopted in the computer simulations of
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fiber stretching (Katritch et al., 2000). In the following we
denote the actual linker length byb# in order to distinguish it
from b, the distance between neighboring nucleosomes. For
symmetry reasons, there is no torque on the structure, so
that dhk/ds [ 0. The stretching of the fiber is achieved by
a bending of the linkers with the entry-exit-angleu remain-
ing constant (cf. Fig. 5B). This leads to a deformation
where the tangent vectorstk(0) andtk(b#) remain parallel but
undergo lateral displacement. We assume a small deforma-
tion of the linker with displacementu(s) from the straight
configuration small compared tob# . (Becauseu(s) is the
same for all the linkers, we drop the indexk from here on.)

From the minimization ofEk, Eq. 15, we obtain the
Euler-Lagrange equationd4u/ds4 5 0. The boundary con-
ditions that must be obeyed by the solutions areu(0) 5
u9(0) 5 u9(b#) 5 0 and u(b#) 5 d, whered describes the
displacement of the bead vertical to the original straight
linker (we assumed ,, b# here and neglect terms of the
order (d/b#)2). It follows that the deformation profile is given
by u(s) 5 22ds3/b#3 1 3ds2/b#2. The associated bending
energy isE 5 6kd2/b#3 (per linker). The deformation trans-
lates into an effective change in the deflection angle fromu
to u 2 Du whereDu/2 5 d/b# ; see Fig. 5B. The energy of a

fiber with N linkers as a function ofDu is thus given byE 5
(3/2)(k/b#)(Du)2 N.

The change inu produces a change in the overall length
of the fiber. We find from Eq. 1:

L 5 b#N cosSu 2 Du

2 D
. L0 1 b#N sin~u/2!Du/2, Du ,, 1~7 d ,, b#! (16)

whereL0 is the contour length of the unperturbed fiber, Eq.
1. The energy can be rewritten in terms of the extension
DL 5 L 2 L0. The restoring force follows then fromf 5
dE/dL:

f .
12

N sin2~u/2!

k

b#3
DL (17)

The associated stretching modulus (defined as in Eq. 14)
follows from Eqs. 1 and 17:

gfiber~u! .
12ADNA

b#2

cos~u/2!

sin2~u/2!
(18)

We next consider the deformation of fibers with crossed
linkers (f ,, 1, u large). When such a fiber is stretched,
linkers will be twisted and bent. Interestingly, a fiber with a
high bending stiffness (k3 `) can still be stretched just by
twisting the linkers. When one applies a tension to such a
fiber each linker is twisted and the rotational angle changes
by Df from one linker to the next, i.e.,dh/ds5 Df/b# . The
twist is distributed homogeneously along the linker since
d2h/ds2 5 0, which follows from minimization ofEk in Eq.
15. The energy per linker is given byE 5 (C/2)(Df2/b#). The
twist of the linkers changes the length of the fiber, and using
L from Table 1 it is straightforward to calculate the force as
a function of the relative extension:

f .
4C

cot2~u/2!b#3N
DL (19)

In the opposite limit of linkers with extremely high torsional
stiffness (C3 `), the force-extension curve can be mapped
onto the planar zig-zag case, described above, by replacing
p 2 u by f̃ . f cot(u/2), the “effective” angle between two
consecutive linkers as seen from the “side” of the fiber.
(This follows fromf̃ . 2Dl/b# , whereDl is the difference in
the longitudinal position of beadi and i 1 1; Dl 5 (fb# /2)
cot(u/2)). Using Eq. 17 we find

f .
12k

b#3N cos2~f̃/2!
DL (20)

We can now define as before the two stretching moduli
gtwist andgbendusing Eqs. 19 and 20 together with Eq. 4. If
we allow both twist and bend, then the two “spring con-

FIGURE 5 Stretching of a zig-zag chain. (A) The unperturbed chain
(F 5 0) has a total lengthL0 and straight linkers. (B) The same fiber under
tensionF . 0. The fiber is stretched to an end-to-end distanceL . L0 by
bending of the linkers. The linkers are bent in such a way that the entry-exit
angles at the individual nucleosomes remain unchanged.
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stants” act “in series”:gfiber
21 5 gtwist

21 1 gbend
21 . We obtain for

the stretching constant of the fiber (f ,, 1, u large)

gfiber~u, f! 5 gbendS1 1
gbend

gtwist
D21

5
6ADNA

b#2

f̃

cos2Sf̃

2D 31 1

3 cot2Su

2D
cos2Sf̃

2D
k

C4
21

(21)

For largen (with n defined asn 5 p/(p 2 u)) the twisting
contribution can be neglected because thengbend/gtwist '
(3/4)(p/n)2(k/C). For DNA C . kBT 3 750 Å * k (Klenin
et al., 1989; Crothers et al., 1992) so thatgbend,, gtwist for
n * 5. In this case one hasgfiber . gbendand Eq. 20 applies.

Entropic elasticity

Just as for naked DNA, the entropic contribution to the
elasticity dominates for weak forces (L ,, L0). The restor-
ing force is again of the form

f 5
3kBT

Afiber

L

L0
(22)

with Afiber the persistence length of the fiber. This persis-
tence length is calculated in Appendix C. For the case of the
crossed-linker fiber we find

Afiber < ADNA

f

2
cot~u/2! (23)

For values ofu and f appropriate for the crossed-linker
structure,Afiber is somewhat less thanADNA (of the order of
50 nm). This surprising conclusion is related to the fact that
a large amount of DNA material is stored in the fiber per
unit length. The 30-nm fiber is thus indeed highly flexible.

Our calculation of the stretching properties of the two-
angle model predicts an important difference between the
stretching behavior of DNA and that of the 30-nm fiber. The
enthalpic stretching modulus of a chromatin fiber is of the
orderADNA/b#2 (see Eqs. 18 and 21), which is;0.3 nm21 for
40-bp linkers (b# 5 40 3 0.34 nm. 14 nm). This is only an
order of magnitude larger than the entropic stretching mod-
ulus 1/Afiber . 0.03 nm21. In other words, because of the
low value ofgfiber and becauseAfiber ' ADNA, there is no
longer a very clear distinction between entropic and enthal-
pic behavior as it is observed for naked DNA. In conclusion,
the 30-nm fiber shows soft elasticity under stretching due to
bending and twisting of the linkers.

Internucleosomal attraction

The effect of attractive interaction between nucleosomes is
to cause a compression of the 30-nm fiber. Phase behavior

studies of linker-free nucleosome solutions, i.e., solutions of
disconnected nucleosomes (Livolant and Leforestier, 2000;
cf. also Fraden and Kamien, 2000) indicate that nucleosome
core particles spontaneously form fiber-like columnar struc-
tures, presumably due to attractive nucleosome-nucleosome
interaction. Attractive nucleosome interaction could be me-
diated, for instance, by the lysine-rich core histone tails
(Luger et al., 1997), as mentioned above.

It is important to distinguish these condensed fibers from
the swollen solenoid-, zig-zag-, and crossed-linker struc-
tures predicted by the (u, f, b)-model. The dominant energy
of the condensed structures is the nucleosome attractive
interaction, while the “swollen” structures are dominated by
linker elasticity. In this section we will discuss the compe-
tition between swollen and condensed phases for a simple
case.

For simplicity, we model the fiber as a planar zig-zag
structure with elastic linkers and assume in addition a short-
range interaction between nucleosomes. This interaction,
denoted byUinter, is assumed to be a short-range attraction,
of strength2Umin, that acts only when the nucleosomes are
in close contact, i.e., at a distancex ' 2a of the order of the
hardcore diameter. For a given nucleosome, say theith, the
closest nucleosomes in space are numberi 1 2 andi 2 2,
as discussed previously. We will disregard the interaction
between other pairs. The elastic interactionUel follows
directly from Eq. 17 withN 5 2:

Ubend~x! 5
3

sin2~u/2!

k

b#3
~x 2 x0!

2

5
K

2
~x 2 x0!

2 (24)

wherex0 5 2b# cos(u/2) denotes the distance between nu-
cleosomei andi 1 2 for straight linkers (cf. Eq. 1). The total
internucleosomalU(x) equalsUinter(x) 1 Ubend(x).

Fig. 6A showsU(x) for different values ofu. We assume
for simplicity that the interaction energyUinter remains
unchanged. Curve “1” in Fig. 6A showsU(x) for a small
value ofu where the global minimum ofU(x) is located at
x 5 x0, denoted by “S” (swollen state). Curve “2” corre-
sponds to an intermediate value ofu at which the minima at
“S” and “C” have the same value. For this value ofu, u 5
uc, the energy minimum shifts from “S” to a new minimum,
representing the condensed state “C.” The change inu
produced a structural transition from a swollen state to a
condensed state. Finally, curve “3” depictsU(x) for a de-
flection angleu . uc with the minimum at “C.” The critical
angle for the “S” to “C” transition can be determined by
comparing the bending energy at close contact,Ubend(2a),
and the strengthUmin of the short range attraction. Equating
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both leads to the following condition foruc:

cos~uc/2! 2 Îb#~Umin/kT!

6ADNA
sin~uc/2! 5

a

b#
(25)

In the swollen state the elastic properties are those discussed
in the previous section. In the condensed state, the elastic
properties are determined by the detailed form of the nu-
cleosome interaction potential.

If the condensed state has a lower free energy, i.e., ifu .
uc, then an external stretching forcef can induce a transition
from the condensed to the swollen state. The transition point
fCS follows from a “common-tangent” construction. The
conditions areU9(x1) 5 U9(x2) 5 fCS and (U(x2) 2 U(x1))/
(x2 2 x1) 5 fCS (cf. Fig. 6A). The first pair of conditions
leads tox1 5 2a, x2 5 x0 1 fCS/K. The last condition leads to

fCS 5 Î2KUmin 2 K~x0 2 2a! (26)

The corresponding force-extension curve has a “coexist-
ence plateau” (cf. Fig. 6B). If the imposed end-to-end
distance is smaller thanL0 (the contour length of the con-
densed fiber) then the restoring force is entropic. ForL0 ,
L , L1 the force rises sharply with increasingL. This “hard
elasticity” is governed by the nucleosomal interaction po-
tential Uinter. Then atL 5 L1 the coexistence plateau is
reached. BetweenL 5 L1 andL 5 L2 parts of the fiber are
in the “S” state and parts are in the “C” state. For larger
extensions,L . L2, the fiber shows soft elasticity due to the
bending (and twisting) of the linkers as discussed in the
previous section.

Stretching chromatin

We now compare the results of the previous two sections
with the force extension curves found in recent experiments
(Cui and Bustamante, 2000).

Low ionic strength

We start with the force-extension profile measured at low
ionic strength (5 mM), cf. Fig. 2 in Cui and Bustamante. As
discussed above, at low ionic strength the chromatin fiber
constitutes a swollen fiber with crossed linkers. The nucleo-
somes are far apart and we assume that there is no direct
interaction between nucleosomes. The resulting force-ex-
tension profile is expected to show a crossover between an
entropic elasticity (cf. Eq. 22) and a soft enthalpic elasticity
with a stretching modulus given by Eq. 21:

f . 5
6kBT

lPb#f̃N
L for L ,, L0

2kBTgfiber

f̃b#N
~L 2 L0! 1

3kBT

lP
for L .. L0

(27)

with L0 . (f̃/2)b#N (cf. Table 1).
Cui and Bustamante estimate the number of nucleosomes

in their fibers to beN ' 280. From the formula forL in
Table 1, we would estimate the length of the fiber to be
L0 ' 1.0mm using the valuesu 5 95° (Bednar et al., 1998),
f 5 36° (Widom, 1992), andb# 5 40 bp5 403 0.34 nm5
1.4 3 1028 m. The linker length is estimated from the
nucleosome repeat length of;210 bp (cf. Table 7-1F in van
Holde, 1989) minus;170 bp that are associated with the
core and linker histones (cf. page 268 in van Holde, 1989).
Using the moduli for DNA (Hagerman, 1988),k 5 kBT 3
50 nm5 2 3 10216 pN m2, C 5 kBT 3 75 nm5 3 3 10216

pN m2, and lP 5 30 nm for the persistence length of the
fiber (cf. Appendix C), we find from Eq. 27 the following
force-extension relation (force in piconewtons, extension in
microns):

f . H 0.353 L for L ,, 1.1
1.23 ~L 2 1.0! 1 0.4 forL .. 1.1 J (28)

FIGURE 6 (A) Internucleosomal interaction potentialU between nucleo-
some i and i 1 2 as a function of distancex. In addition to the elastic
contribution there is a short-range attraction for nucleosomes at close
contact,x 5 2a. The different curves correspond to different values of the
angleu. Curve “1” has the global minimum at largex (swollen state “S”),
whereas curve “3” has the minimum for nucleosomes in close contact
(condensed state “C”). Curve “2” corresponds to the transition point. Also
depicted is the common tangent for curve “2”. Its slope corresponds to the
critical stretching forcefCS at which nucleosomes are transferred from the
condensed to the stretched state. (B) Force-extension curve of a condensed
fiber (say, the fiber with the interaction potential “3”). For extensionsL
with L1 , L , L2 one finds a coexistence plateau with the restoring force
fCS (see text for details).
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The agreement with the experimental curve at low ionic
strength (5 mM NaCl) is reasonable (cf. Fig. 2,a andb in
Cui and Bustamante, 2000). More explicitly, for forces up to
5 pN and extensions up to' 2 mm there are two distinctive
regimes: for small extensions,L & 1 mm, the force increases
only slightly with tension, namely roughly asf ' 0.5 3 L.
Then for L * 1 mm the measured force increases much
faster and shows the following linear dependence:f ' 7 3
L (Fig. 2A) or f ' 5 3 L (Fig. 2B). The different slopes in
this regime are a result of a slight hysteresis: the relaxation
curve has a smaller slope after the fiber has been stretched
to an end-to-end distance of 2.5mm (Fig. 2B) than for the
case of a much smaller stretching cycle (up to 1.8mm, Fig.
2 A in Cui and Bustamante, 2000); the hysteresis disappears
for a smaller rate of extension or contraction, and might be
a result of nucleosome-nucleosome interaction or of modi-
fications of the fiber close to the entry-exit point of the
linkers at higher tension. We also mention that for forces
beyond'5 pN the (relaxation) curve shows an increasing
slope, probably due to nonlinear effects not accounted for in
the current study (see Note 6).

The calculated forces are smaller than the measured ones
(roughly by a factor of 4), for several reasons. First, the
(mean) values ofu, f, andb# (and thusN) are only roughly
known. Second, the value ofu we used (95°) is not large
enough compared top for the above-given theoretical for-
mulas to hold accurately. However, as a check of our
analytical approximations, we compared our results with the
computer simulations by Katritch et al. (2000) whereu, f,
andb# are variable. This comparison is given in Appendix D,
where we show that there is good agreement indicating that
our analytical approximations were in fact reasonable.

High ionic strength

For 40 mM NaCl or higher ionic strength the chromatin
fiber is much denser and nucleosomes approach each other
closely. Attractive short-range forces and the increase ofu
associated with higher ionic strength should favor the con-
densed phase. A plateau indeed appears at 5 pN in the
force-extension plot (cf. Fig. 4 in Cui and Bustamante,
2000). From the extent of the plateau, 0.6mm, its height, 5
pN, and the number of nucleosomes in the stretched fiber,
'280, it was estimated that there is an attractive interaction
energy of;3 kT per nucleosome (Cui and Bustamante,
2000).

We now can use Eq. 26 to independently estimate the
strength of the nucleosomal attraction from the value of the
critical force alone. We find:

Umin 5
~fCS 1 K~x0 2 2a!!2

2K
(29)

If we neglect the second term in the bracket, we findUmin '
f2/(2K) ' 6 kT (assumingu 5 140°), close to the value 3 kT

estimated directly from the force-extension diagram (Cui
and Bustamante, 2000) and also in accordance with the
computer simulation of Katritch et al. who obtained an
internucleosomal short-range attraction of order 2 kT (Ka-
tritch et al., 2000).

UsingUmin 5 3 kT we can estimate the critical valueu 5
uc at which the condensed and the swollen chromatin fiber
should coexist. We find numerically from Eq. 25 thatuc '
100° (usinga 5 5 nm andb# 5 14 nm). This value is lower
than the one that can be inferred from experiments. At 15
mM NaCl (u ' 135°) the fiber appears to be decondensed,
as indicated by stretching experiments and from electron
cryomicrographs. This fact, and the appearance of a plateau
in the force extension curve at 40 mM salt (whereu ' 140°)
indicates that one should expect 135°& uc & 140° (cf.
Bednar et al., 1998). It should be recalled, however, that our
model for the attractive interaction is highly oversimplified.

CONCLUSIONS

The present analytical study of the (u, f, b) model first of all
shows that this model can account for the measured force-
extension curve of the 30-nm fiber in the low-salt regime
with, in effect, no fitting parameters (becauseu, f, andb
can be estimated experimentally and the elastic moduli
characterizing naked DNA are known). Since the (u, f, b)
model also accounts for the observed low-salt structure of
the 30-nm fiber (“crossed linkers”), there seems to be good
evidence that this model is at least the proper description in
the low-salt regime.

We have been able to compute the structural and elastic
properties over a wide range of (u, f)-values. We suggest
that the native chromatin fiber might be a particular real-
ization of this rich array of structures, namely the one that
simultaneously maximizes compaction and accessibility,
consistent with the restriction of excluded volume between
nucleosomes.

Confirmation that a certain optimization principle is in
fact operative for biomolecules is usually a difficult issue.
We already saw that, at best, the principle is incomplete
because the linker-lengthb evidently is not determined by
the conditions of maximum compaction and accessibility.
One possibility may be to explore the fine structure of the
dotted curve in Fig. 4, the lower bound off as a function of
u. This is expected to have an “irregular” shape due to
commensurate-incommensurate effects and it may be pos-
sible to associate a discrete geometrical structure (e.g., a
particular indexn for the polygonal star projection) with
maximum compaction and accessibility. Such a study
would require, however, a better description of the structure
of individual nucleosomes and extensive numerical work.

How confident can we be that the (u, f, b) model is
appropriate as well in the biologically relevant regime of
physiological salt concentrations? We had to include a weak
attractive nucleosome interaction to explain the coexistence
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in the force-extension curve. If the fitted value for the
attractive potential (Umin) is used in Eq. 25 we obtain a
reasonable estimate for the critical angleuc for the “S” to
“C” transition (but with a significant error).

A completely different approach would be that the high-
salt regime is controlled not by a balance between soft
elasticity and weak attraction, but completely by nucleo-
some-nucleosome attraction forces (plus short-range repul-
sion). As shown by the work of Livolant and Leforestier
(2000), nucleosome attraction indeed can produce discoidal
fiber structures (formed by linker-free core particles) all by
itself. If the interaction energy is strong enough, then the
linkers would be strongly bent in the condensed state. The
(u, f, b) model would not be a valid description anymore.
The effect of tension could be to produce a sequence of
different condensed structures. Only at high tension, when
the internucleosomal contacts are broken, one recovers the
soft-elasticity regime, described well by the (u, f, b)-model.
Which of the two approaches is valid is an issue that must
be determined experimentally.

Interesting questions for “chromatin physics” in the fu-
ture may focus on dynamical issues. Suppose thatu is
locally increased, e.g., by acetylation of core histone tails;
how long does it take for the accessibility to increase
sufficiently? How important are nucleosome mobility
(Schiessel et al., 2001) and nucleosome “evaporation”
(Marko and Siggia, 1997) for the swelling dynamics of
chromatin?

NOTES

1. Experiments on dinucleosomes (two nucleosomes connected by one
linker) have been performed to check if the nucleosomes “collapse” upon
an increase in ionic strength. A collapse would only occur if the linker
bends, and an observation of this phenomenon would support the solenoid
model. The experiments by Yao et al. (1990) and more recent experiments
by Butler and Thomas (1998) indeed reported a bending of the linkers but
do not agree with experiments by Bednar et al. (1995) and by others that
did not find any evidence for a collapse. Critical discussions of these and
other experiments on dinucleosomes are available (van Holde and Zla-
tanova, 1996; Widom, 1998).

2. Marko and Siggia (1997) had in fact proposed an elastic model that
predicted a coexistence regime in the force-extension curve, with nucleo-
somes “evaporating” from the fiber at higher force levels of the order of 2
pN, which would lead to extensive irreversibility in the force-extension
curve. Although irreversibility is encountered at high force levels, as
mentioned, the 5-pN plateau is reversible, indicating that there was no
nucleosomal loss.

3. We note that such an open structure could in principle collapse into
a very dense fiber like the solenoidal model proposed by Klug (cf. Fig. 2A)
if we would allow the linkers to bend. As mentioned before, it is still a
matter of controversy if such linker bending takes place in chromatin. We
will stick in this study to the assumption of straight linkers.

4. We mention that in the limitf3 0 we recover the planar circle with
radiusR . b/u, cf. Table 1.

5. The statistical uncertainty around the expectation values for the
nucleosome repeat length is sufficiently large to make our estimate forf
less reliable.

6. Our calculation is based on the assumption of small deformations.
For the zig-zag case this requiresd ,, b# , i.e.,Du ,, 1, cf. Fig. 5B. Using

Eqs. 16 and 17 this condition translates into the requirement that the
tensionf is smaller than 6k/(b#2 sin(u/2)). For fibers with internal linkers the
condition isDf̃ ,, 1, leading tof ,, 6k/(b#2 cos2(f̃/2)). Thus, in both
cases a good estimate for the range of forces where the linear approxima-
tion holds is given byf , 6k/b#2. For the chromatin fiber under consider-
ation we find 6k/b#2 . 6 pN.

APPENDIX A: THE MASTER SOLENOID

For any given set of angles (u, f) there is a solenoid so that the successive
monomers of the fiber structure lie successively on this helical path. (There
are actually many such solutions, but we are interested in the one with the
largest pitch angleg.) We parametrize the solenoid as follows

r ~s! 5 S Rcos~as/R!
Rsin~as/R!
s

D (30)

R denotes the radius of the solenoid anda is related to the pitchg by

a 5 cot g (31)

(as follows fromṙ (0) 5 (0, a, 1)).
Assume now an infinite fiber of monomers with a given pair of angles

(u, f). The monomers are located at the positionsR0, R61, R62, . . . . The
axis of the fiber coincides with thez-axis. Assume further that we choose
the valuesR anda so that the solenoid curve goes through all monomers.
Put the monomer labeledi 5 0 at s 5 0 so thatR0 5 (R, 0, 0); the
subsequent monomer,i 5 1, is at a positionR1 given by Eq. 30 withs 5
s0. The next monomer is located atR2 5 r (2s0). Finally, the position of
monomeri 5 21 is given byR21 5 r (2s0).

Now let us calculate the bond vectors between these monomers. Mono-
mer i 5 1 is connected to monomeri 5 0 via

r 0 5 R1 2 R0 5 S Rcos~as0/R! 2 R
Rsin~as0/R!
s0

D
The separation vector between monomeri 5 2 andi 5 1 is given by

r 1 5 R2 2 R1 5 S R~cos~2as0/R! 2 cos~as0/R!!
R~sin~2as0/R! 2 sin~as0/R!!
s0

D
and that between monomeri 5 0 andi 5 21 by

r 2 5 R0 2 R21 5 S R2 Rcos~as0/R!
Rsin~as0/R!
s0

D
s0 follows from the condition of fixed linker length, i.e.,ur0u 5 b. This leads
to the relation

b2 5 2R2~1 2 cos~as0/R!! 1 s0
2 (32)

We determineu from cosu 5 r0 z r2/ur0
2u, which leads to

cosu 5
2R2cos~as0/R!~1 2 cos~as0/R!! 1 s0

2

2R2~1 2 cos~as0/R!! 1 s0
2 (33)

Finally, f is the angle between normal vectors of the planes that are
defined by monomers 0 and 1, i.e., cosf 5 n1 z n2. We obtainn1 andn2

from n1 5 A/uAu andn2 5 B/uBu, whereA 5 r0 3 r1 andB 5 r2 3 r0.
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After some algebra we arrive at

cosf 5
s0

2 cos~as0/R! 1 R2sin2~as0/R!

s0
2 1 R2sin2~as0/R!

(34)

Equations 32–34 relatea (or g), R, ands0 of the spiral tof, u andb.

APPENDIX B: RANDOMNESS IN
THE f-DISTRIBUTION

Up to now we have assumed that the values of the anglesu and f are
constant throughout the fiber. The resulting “ground state” configuration
(unbent and untwisted linkers) is a fiber whose axis is perfectly straight.
The assumption that the linker entry-exit angleu is constant is based on the
fact that it is a local property of the nucleosome core particle, and as long
as the biochemical conditions are homogeneous throughout the fiber, this
should be a reasonable assumption. It is known, however, that the rota-
tional positioning is not perfect, as can be seen from the experimentally
determined distribution of the linker length in chromatin (Widom, 1992).
Even though a preferred rotational setting can be deduced, the width of the
distribution of linker lengths will be reflected in the width of the distribu-
tion of the anglef. If the rotational setting of the nucleosomes were
completely random, then the chromatin configurations would correspond to
particular configurations of the freely rotating chain (if we neglect ex-
cluded volume effects) (Doi and Edwards, 1986). These configurations, in
turn, are those of a Gaussian chain with a persistence lengthlP 5 b(1 1 cos
u)/(1 2 cosu) (the Kuhn statistical length as defined in Doi and Edwards,
1986). Note thatlP increases whenu decreases, a mechanism similar to the
accordion-like unfolding of the zig-zag structure or the untwisting of the
fiber with crossed linkers discussed above. In the following we will assume
small variations of the rotational setting around some mean valuef. We
consider the three cases: the solenoid, the fiber with crossed linkers, and
(twisted) zig-zag structures.

Solenoids (f << 1, u << 1)

We start with the solenoidal fiber withf ,, u ,, 1. Then the pitch angle
is small (cf. Eq. 3) and each loop of the solenoid resembles a circle. The
small variations inf will add up to an effective deviationDz from the
original orientation of the fiber per turn of the helix. If one hasn monomers
per turn it can be shown that^Dz2& 5 nsf

2, with sf the width of the
f-distribution.Dz is Gaussian with a widthsz 5 =nsf. With each turn the
middle axis of the solenoid proceeds by a lengthd, whered is given by Eq.
2. We can interpret the middle axis of the solenoid as a new effective chain
with bond lengthd, and calculate the average of the scalar product of an
arbitrary pair of successive bond vectorsai andai11 of this new effective
chain:

^aiai11& 5
d2

Î2psz
E dDz cos~Dz!expS2 Dz2

2sz
2D

. d2S1 2
sz

2

2 D, (35)

the approximation holding forsz ,, 1. It follows that the end-to-end
distance of the chain, assuming that the solenoid hasM turns (correspond-
ing to a fiber ofN 5 2pM/u nucleosomes), is

^L2& 5 O
n51

M O
m51

M

^anam& .
4d2M

sz
2 (36)

The persistence lengthlP of the fiber follows fromlP 5 ^L2&/(dM):

lP .
4f

usf
2 b (37)

where we have made use of the relationsd . (2pf/u2)b (cf. Eq. 2) andsz
2

5 2psf
2/u. These results must be modified for solenoids with larger pitch

angle g (u ,, f ,, 1), where—as only the componentDfcos g of a
variationDf in the rotational anglef leads to a change in the direction of
the fiber (the componentDfsin g leads to a twist)—one has to replacesf

by sf cos g. The resulting persistence length is given bylP . 4b/(sf
2

cos2g) . 4bf2/(sf
2u2).

Fiber with crossed linkers (f << 1, p 2 u << 1)

This case can be calculated analogously. The number of monomers per
“turn” is given byn 5 p/(p 2 u) (see above) so thatsz 5 =p/(p 2 u)sf.
Furthermore, the bond length of the new effective chain isd . pfb/4 (cf.
Eq. 4). From Eq. 36 it follows that a fiber ofN 5 nM monomers has the
mean-squared end-to-end-distance

^L2& .
p

4

f2~p 2 u!

sf
2 b2M (38)

and a persistence length

lP .
f~p 2 u!

sf
2 b. (39)

Now consider typical values for chromatin:f 5 36°,b 5 20 nm, andu '
145° at 80 mM,u ' 135° at 15 mM, andu ' 95° at 5 mM (Bednar et al.,
1998). Assume that the histones are located at equidistant positions but
with small variations, typically61 bp, i.e.,sf ' 36°; then we findlP ' 20
nm at 80 mM,lP ' 25 nm at 15 mM, andlP ' 47 nm at 5 mM.

Twisted zig-zag fiber

Finally, we consider zig-zag structures, first the case where the anglef
fluctuates around the mean valuep (planar zig-zag). (With no fluctuations
in f, the zig-zag structures simply represent a perfectly flat ribbon.)
Assume first that one bond is slightly rotated byDw ,, 1. As a conse-
quence, the ribbon is deflected by an angleDz1 . sin(u/2)Dw; furthermore,
the orientation of the plane defined by the ribbon rotates by an angleDz2 .
cos(u/2)Dw. A long ribbon-like zig-zag structure with small fluctuations of
the f-angle shows individual configurations typical of a polymer with an
anisotropic bending rigidity (Nyrkova et al., 1996); such a polymer has a
plane of main flexibility, being highly rigid in the direction perpendicular
to this plane. The anisotropy leads to two persistence lengths: an in-plane
persistence lengthl1, which is associated with the deflection of the ribbon
within the plane of main flexibility; and an out-of-plane persistence length
l2, the typical polymer length that is needed to “forget” the orientation of
the plane of main flexibility.l1 follows from the number of monomersn1

that is needed on average to forget the original orientation of the axis of the
ribbon,Dz1

2n1 5 4 (the numerical value is chosen so thatl1 is compatible
with the definition of the Kuhn statistical length). Thus

l1 5 b cos~u/2!n1 .
4 cos~u/2!

sin2~u/2!

b

sf
2 (40)

Similarly, l2 follows from (2p)2 5 Dz2
2n2:

l2 . b cos~u/2!n2 .
4

cos~u/2!

b

sf
2 (41)
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We consider the two limiting cases. 1)u 5 0: herel1 5 ` andl2 . 4b/sf
2.

The configuration of the chain is that of a straight line. Variations inDw do
not affect the positions of the monomers. 2)u3 p: by reaching this limit
the chain collapses into a configuration where it just goes back and forth
between two monomer positions. Indeed, we find from the above equations
that l13 0 andl23 `.

For a twisted zig-zag structure withf 5 p 2 d with d ,, 1 there is an
inherent orientational persistence length that follows from the twist of the
fiber. This leads to a lengthl#2 . b cos(u/2)n#2, wheren#2 5 2p/d denotes the
number of monomers per turn. Apparently the inherent twist competes with
the randomly introduced one, and the out-of-plane persistence lengthl2 (cf.
Eq. 41) has to be replaced byl#2 if l2 & l#2. The role of variations in the linker
length in the case of a twisted zig-zag structure was simulated by Wood-
cock et al. (cf. Fig. 3 in Woodcock et al., 1993). They chose the caseu 5
120° andd 5 360°/13. 0.48. Using Eqs. 40 and 41 we findl1 . 2.7b/sf

2,
l2 . 8.0b/sf

2, and l#2 5 6.5b. It follows from our formulas that the
persistence lengthsl1 andl2 decay rapidly withsf, a trend that can also be
seen in the displayed configuration in Fig. 3 of Woodcock et al. If we
choose, for instance,sf 5 1/2, we findlp . 11b, a persistence similar to
that of the fiber displayed in their Fig. 3b. If we doublesf, i.e., sf 5 1,
we find l1 . 3b so that there is no longer a well-defined fiber; a similarly
disordered fiber is displayed in their Fig. 3d. A closer comparison between
our theoretical results and the disordered fibers shown in Woodcock et al.
is not possible because in the case of the “simulated” fibers a discontinuous
distribution of the values off was chosen, thereby varying the number of
basepairs per linker.

APPENDIX C: PERSISTENCE LENGTHS

We calculate here the effect of linker flexibility on the persistence length
of the two-angle fiber. We first calculate the zig-zag-structure where one
has two different persistence lengths, the persistence lengthlP

(in) for bending
within the plane of the fiber, and the lengthlP

(out) for bending out of the
plane.

Zig-zag fiber: bending in plane

Assume that the ribbon is bent within its plane with a large radiusR of
curvature so thatR .. b. The linkers are bent but not twisted in this case.
Up to corrections of order (b# /R)2 the shape of each linker (i.e., its deviation
from a straight line) is given byu(x) 5 2«x2/b# 1 «x. This function fulfills
the appropriate boundary conditionsu(0) 5 u(b#) 5 0 and u9(0) 5
2u9(b#) 5 «. This leads to the following bending energy per linker:E 5
(kb# /2R2)cos2(u/2). In the longitudinal direction of the fiber this corre-
sponds to the bending of a piece of the lengthb# cos(u/2). Thus

Afiber
(in) 5 ADNAcos~u/2! (42)

Zig-zag fiber: bending out of plane

This bending is accomplished by a combination of twist and bending of the
linkers. Consider the two cases separately. If there is only twist allowed
(k3 `), then each linker has to be twisted by an angleb# cot(u/2)/R, which
leads to a twisting energyE 5 C cot2(u/2)b# /2R2 and then in turn to the
persistence lengthAtwist

(out) 5 (C/kBT)cos(u/2)/sin2(u/2). Now consider the
case without twisting (C3 `) but with bending of the linker only. If one
bends a linker out of the plane of the fiber with a radius of curvatureR, it
can be shown that as a result the zig-zag is deflected by an angleb#

cos(u/2)/R. If each linker is bent in such a way, the zig-zag fiber is bent out
of its plane with an overall curvature of 1/R. The bending energy per linker
is E/kBT 5 ADNAb# /2R2, leading to a persistence lengthAbend

(out) 5 ADNA/
cos(u/2). By putting the two deformation modes “in series” we find the

overall persistence length for bending the zig-zag out of the plane:

Afiber
(out) . ~1/Atwist

(out)1 1 1/Abend
(out)!21 5

ADNA

cos~u/2!

1

1 1
k

C
tan2~u/2!

(43)

For small angles ofu, the bending contribution dominates andAfiber
(out) 3

ADNA for u3 0 (naked DNA). However, a very dense zig-zag with a value
of u close top is bent by the twisting of the linkers, leading to a very short
persistence lengthAfiber

(out) . (C/kBT)cos(u/2). Interestingly, for DNA where
k ' C, one finds from Eq. 43Afiber

(out) ' ADNA cos(u/2) over the whole range
of u-values. Thus, in this caseAfiber

(in) ' Afiber
(out).

Fiber with crossed linkers

If we bend such a fiber within a given plane, then an inhomogeneous
deformation pattern result where some of the linkers are oriented (nearly)
parallel to the fiber while others are perpendicular. The first class of linkers
will be bent, the second will be mostly twisted. The effective angle is now
p 2 f cot(u/2) instead ofu (this follows fromL in Table 1 withN 5 2).
As C ' k, the contribution to the elastic energy is approximately the same
for all the linkers, leading to a persistence length

Afiber < ADNAcosSp

2
2

f

2
cot~u/2!D . ADNA

f

2
cot~u/2! (44)

Using theu-values given by Bednar et al.,f ' 36° (andADNA ' 50 nm),
we find Afiber ' 14 nm foru 5 95° (the value at 5 mM monovalent salt),
Afiber ' 6 nm foru 5 135° (15 mM), andAfiber ' 5 nm foru 5 145° (80
mM). These values are smaller than the diameter of the fiber, so it is
reasonable to assumeAfiber ' 30 nm for the persistence length of the 30-nm
fiber (roughly independent of the salt concentration).

APPENDIX D: COMPARISON WITH
COMPUTER SIMULATIONS

Katritch et al. performed Monte Carlo simulations of the two-angle model
with flexible linkers (Katritch et al., 2000). Here we compare their results
with our theoretical predictions. We first base our analysis on the results for
the zig-zag case, Eq. 17, for reasons given below. Including the entropic
contribution, we find the following force law:

f 5 5
3kBT

lPcos~u/2!
x for x ,, cos~u/2!

12

sin2~u/2!

k

b2 @x 2 cos~u/2!# for x .. cos~u/2!

1
3kBT

lP
(45)

To allow a better comparison with the diagrams in Fig. 3 of Katritch et al.
we present in Eq. 45 the force as a function of the relative extensionx 5
L/(b#N). Although most of the data of Katritch et al. were obtained assuming
a (quenched) set of random values of the rotational setting of the nucleo-
somes, we believe that the qualitative dependence off on u andb# should
be unaffected by this assumption. Figure 3a in Katritch et al. shows the
dependence of the force-extension profile on the entry-exit angleW5 p 2
u. It can be seen that the initial slope (entropy regime) decreases withW
(increases withu) in accordance with Eq. 45. The behavior at larger forces
shows the opposite dependence, as is also predicted by Eq. 45. Finally, the
crossover is shifted with increasingW to larger values; this again is in
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accordance with Eq. 45. Fig. 3b in Katritch et al. depicts the dependence
on the linker lengthb# ; here the data show no indication of a dependence of
the initial slope onb# , and similarly for the value of the crossover, all in
accordance with Eq. 45. Then, for the second regime, they find an increas-
ing slope with decreasing linker length, also in accord the above theory.

Fig. 3c of Katritch et al. shows a comparison between random rota-
tional settings of the nucleosomes and nonrandom settings. The zig-zag
case,f 5 p, has a slightly smaller initial slope than the random case and
a slightly larger slope in the second linear regime, but always follows the
case of random settings quite closely. This justifies the above comparison
between Eq. 45—based on the zig-zag case—and the computer simula-
tions using a random setting. Fig. 3c of Katritch et al. now also allows a
direct quantitative comparison. We predict from Eq. 45, for the valuesu 5
2.27 andb# 5 40 bp (used in Katritch et al.), thatf . 0.95x for x & 0.42
andf . 14.9(x 2 0.42)1 0.4 forx * 0.42 (force in piconewtons), in good
agreement with their data points. (Forx * 0.6 the datapoints indicate an
increasing slope, a result of nonlinear effects not taken into account in our
theory.)

Finally, Katritch et al. also provide data points for the casef 5 0.35 and
u 5 2.27. We find from Eq. 27 that one hasf . 4.9x for x & 0.1 andf '
8.6(x 2 0.1) 1 0.5 for x * 0.1. (Herex [ L/b#N, and x0 [ L0/b#N 5
(f/2)cot(u/2) ' 0.1.) This result overestimates the entropic contribution, as
can be seen by comparison with theTw 5 20° curve in Fig. 3c of Katritch
et al. (data points are missing forx , 0.2 but the force atx 5 0.2 is smaller
than 1 pN). The reason is probably the underestimation of the persistence
length of the fiberlP, assumed here to be of the order of the fiber thickness.
The real value could be larger, as this set of angles corresponds to an
extremely dense fiber where excluded volume effects become rather im-
portant. The simulation data for this set of angles is not found to be in good
agreement with the experimental force-extension characteristics. This
might be attributed to the small value of the entry-exit angle (130° instead
of 85° as suggested by the electron cryomicrographs, Bednar et al., 1998);
if we useu 5 95° andf 5 36° (as above) we findf . 1.4x for x & 0.3 and
f ' 4.7(x 2 0.3) 1 0.2 for x * 0.3, which is closer to the experimental
curve.
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